
Optimizing Heterogeneous Compute-in-Memory with Hybrid
Dataflow and In-Network Reduction for Vision Transformer

Zexin Fu†‡, Yihang Zuo†, Yuzhe Ma†, Jiayi Huang†∗
†Thrust of Microelectronics, The Hong Kong University of Science and Technology (Guangzhou)

‡Guangdong-Macao Joint Laboratory for Modular Chip Design and Testing, The Hong Kong University of Science and Technology (Guangzhou)
{zexin.fu,yzuo099}@connect.hkust-gz.edu.cn, {yuzhema,hjy}@hkust-gz.edu.cn ∗Corresponding Author

Abstract—Transformer models have shown remarkable performance
in AI tasks. However, their large model sizes and large-scale matrix
computations heavily press the memory bandwidth. Compute-in-memory
(CIM) solutions have emerged to address these issues by integrating com-
putation into memory. Nevertheless, existing scalable and heterogeneous
CIM designs further suffer from inefficiencies caused by isolated mapping
strategies and communication redundancy. To address these issues, we
propose Cross-Type Mapped Dataflow, an architecture-dataflow co-design
that enables efficient and collaborative analog-digital CIM execution.

Our approach features a heterogeneous analog-digital CIM architec-
ture with flat network-on-chip (NoC) interconnects, enabling seamless
cross-type communication. The core innovations include: a Hybrid
Dataflow that schedules idle CIMs for cross-type collaboration on vector-
matrix multiplication, and an In-Network Reduction (INR) mechanism
that eliminates redundant data transfers by embedding Reduction
operations within NoC communication. Experimental results show an
average 3.57× speedup and 2.78× energy efficiency improvement over
Homogeneous DCIM architecture. Optimized by the proposed Hybrid
Dataflow and INR, our heterogeneous CIMs further achieve an average
4.63× speedup and 2.59× energy efficiency improvement over state-of-
the-art X-Former-like design across various ViT workloads.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have demonstrated
superior performance across various domains. As these models grow
in complexity, their computational demands are increasing rapidly.
This trend places significant pressure on the data access bandwidth,
exacerbating the memory wall problem. Moreover, the rise of emerg-
ing models like Transformer [1] has further intensified this challenge.

Compute-in-Memory (CIM) has emerged as a promising com-
puting paradigm for DNN workloads by integrating computational
capabilities directly into memory. This approach offers high mem-
ory bandwidth and substantially reduces data movement between
Processing Elements (PE) and memory, thereby alleviating memory
access bottlenecks and enhancing computational efficiency. CIM is
particularly well-suited for performing vector-matrix multiplication
(VMM) operations, which are central to DNNs. Resistive RAM
(RRAM) is considered one of the ideal memory cell candidates
for CIM-based DNN accelerators due to their data persistence, high
density, and low read energy [2]. These RRAM-based designs are
typically paired with peripherals, such as ADCs, DACs, Wordline
Driver, Switch Matrix and Shift Adders, to facilitate computation in
the analog domain, referred to as analog CIM.

While RRAM-based Analog CIM designs offer advantages, they
encounter significant challenges when applied to emerging Trans-
former models. Although VMMs remain predominant in Transformer,
the attention mechanism in these models introduces dynamically gen-
erated intermediate weights, as opposed to the pre-trained weights in
CNNs. This results in frequent write operations, imposing significant
latency and energy overhead as well as accuracy damage.

To address these issues, some studies propose using SRAM-based
analog CIM or digital CIM. The latter performs computations in

the digital domain. Additionally, heterogeneous CIM designs, which
combine Analog RRAM with Analog SRAM or Digital SRAM CIMs,
are gaining attention because of their potential to overcome the
limitations of homogeneous designs and achieve dual benefits.

As systems scale to larger sizes, Network-on-Chip (NoC) has
become a fundamental component of CIM accelerators. In typical
designs, a single CIM module is limited in size and cannot accommo-
date entire models, necessitating the interconnection of multiple CIM
modules via NoC. This allows data and instructions to be transferred
through NoC in the form of messages. Compared to Bus-based CIM
architecture, NoC-based designs offer better scalability and flexibility,
particularly in model mapping and data flow scheduling, making them
more adept at handling complex Transformer models.

Our work targets NoC-based heterogeneous CIM accelerators for
Vision Transformer to address the limitations found in previous
studies. Although previous work addresses the feasibility of using
CIM for Transformers, certain inefficiencies still exist in Scalable
and Heterogeneous CIMs. Firstly, prior research often maps different
operations to distinct CIMs. Such isolated mapping strategies lead
to underutilization, as one CIM type remains idle when the other is
active. Secondly, Reduction operations mapped on global Reduction
units introduce additional routing and communication redundancy,
which limits system performance.

To solve the above problems, we propose Cross-Type Mapped
Dataflow, a novel optimization approach combining two key inno-
vations: (1) Cross-Type CIM Collaboration (i.e., Hybrid Dataflow),
which schedules idle cross-type PEs for cooperative computing, and
(2) In-Network Reduction, enabling on-the-fly data reduction during
NoC transmission. This unified solution exploits previously unex-
plored opportunities by simultaneously leveraging spatial parallelism
through cross-type PE utilization and temporal efficiency via in-
network computation. The contributions of this work are as follows.

• We propose a flat and heterogeneous NoC-based architecture
for Vision Transformer, to facilitate cross-type collaboration
on VMM and Reduction operations compared with traditional
hierarchical CIM architectures.

• We design a Hybrid Dataflow to enhance heterogeneous PE
utilization and improve parallelism for VMM operations by
effectively reusing cross-type CIMs.

• We design an In-Network Reduction mechanism to enable on-
the-fly data reduction for both intra-type and cross-type CIMs.

• Experimental results show an average 3.57× speedup and 2.78×
energy efficiency improvement over Homogeneous DCIM. Op-
timized by the proposed Hybrid Dataflow and INR, our hetero-
geneous CIMs further achieve an average 4.63× speedup and
2.59× energy efficiency improvement over state-of-the-art X-
Former-like design across various ViT workloads.979-8-3315-2710-5/25/$31.00 ©2025 IEEE

II. BACKGROUND AND RELATED WORK

A. Heterogeneous CIM for Vision Transformer

A typical Vision Transformer [3], [4] (ViT) first reshapes an
image into 2D fixed-size patch sequences. Then transformer blocks,
composed of Multi-head Self-attention and Feed Forward Network
layers, process the sequence of patch tokens and finally make a
prediction.

To speed up the inference of Vision Transformer, Compute-in-
Memory (CIM), which modifies traditional memory arrays to enable
computing within memory, has been considered a critical component
in ViT hardware. The core Matrix Multiplication operators can be
decomposed into Vector-Matrix Multiplication (VMM) operations,
which can be naturally mapped onto CIM modules.

Due to the non-ideal effects of RRAM ACIM and the low-density
of SRAM DCIM, a heterogeneous architecture has been adopted
in prior research on CIM-based Transformer accelerators [5]–[16].
Firstly, the Dynamic Matrix Multiplication (DMM) in Transformer
requires writing runtime-generated weights, which is unfriendly for
RRAM-based CIM due to high energy cost and non-ideal effects.
Previous studies have proposed using SRAM-based Analog CIM [7],
[10], [13], [16] or Digital CIM [8], [9] to perform DMM operations.
Secondly, Static Matrix Multiplication (SMM) remains prevalent. So,
mapping SMM onto RRAM-based [5]–[9], [11], [14], [16] or SRAM-
based Analog CIM [13], [15] still yields benefits.

Prior research on heterogeneous-CIM-based Transformer accelera-
tors aims to reduce computation amounts of DMM through algorithm
co-design [8], [14], [15]. Some studies have developed specific
modules to leverage the varying sparsity, precision, and weight
writing needs of operators [10], [12]. While diverse PEs enhance
energy efficiency, they often result in lower PE utilization despite the
potential for cross-type PE reuse. X-Former [7] proposed a Sequence
Blocking Dataflow to improve PE utilization by overlapping compu-
tations between SRAM-based and RRAM-based PEs. However, its
benefits are limited due to the operator ordering in Transformers.
Previous approaches have overlooked opportunities for reusing cross-
type but similar PEs during idle times, which we address with a
hybrid dataflow in our work.

B. In-Network Reduction

Due to CIM’s limited subarray size, mapping and partitioning
VMM operations on CIMs generate additional Reduction operations
(when partitioned in weight rows). For typical designs, Reduction
operations are mapped to reduction units (e.g. adders or SIMD
units). However, such designs introduce additional routing (sources-
reduction unit, followed by reduction unit-destination) and commu-
nication redundancy. Inspired by dataflow principles, it is possible
to keep the ideal sources-dst routing while conducting reduction
operations during the NoC transmission process, referred to as In-
Network Reduction.

Previous work has proposed basic designs to support reduction
operations inside routers [17]–[19]. However, [17], [18] implemented
In-Network Reduction based on simple routers, instead of pipelined
routers adopted in the modern NoC, lacking practicality in real
applications. INA [19] proposed an INR solution based on pipelined
routers for CNN accelerators. However, it only considers fixed
sequential INR routing in homogeneous architectures, hindering its
application to heterogeneous architectures that require more complex
routing to avoid deadlocks. Our proposed INR mechanism supports
deadlock-aware routing for mix layouts, enabling both intra-type
and cross-type source reductions (introduced by cross-type mapped
VMMs) on heterogeneous architecture.

DCIM

SIMD

MU

ACIM

Memory Unit

Digital CIM

Analog CIM

SIMD

R R

R R

R R

R R

ACIM ACIM

ACIM

R R

R R

R R

R R

ACIM ACIM

ACIM

DCIM DCIM

DCIM

SIMD MU

MU

MU

MU SIMD

SIMD

SIMD

R

R

R R R RR

R

R

MU

ACIM

DCIM ACIM

ACIM ACIM

ACIM ACIM

Heterogeneous CIM BlockCIM Chip

R Active NoC Router

Fig. 1 Scale-up Architecture with Heterogeneous CIM Blocks

III. ARCHITECTURE DESIGN

The proposed architecture features a flat NoC-based design with
heterogeneous PE components. The main design philosophy focuses
on enabling seamless cross-type PE communication and flexible
dataflows to enhance resource utilization.

A. Heterogeneous CIM Architecture

The heterogeneous CIM block is proposed to facilitate the accel-
erated computing of various operation types in Transformer models,
as shown in Fig. 1. This architecture integrates four primary types
of units, including Analog CIM PEs (ACIM), Digital CIM PEs
(DCIM), SIMD PEs (SIMD), and Memory Units (MU). These units
are interconnected via a mesh-based NoC. A mixed layout is carefully
designed to minimize communication distances between cross-type
PEs, such as the DCIM-ACIM pair and CIM-SIMD pair.

Analog CIM PEs are designed for Static VMM operations. Each
complete PE consists of multiple crossbars and peripherals, similar
to [20]. Additional dummy columns programmed to the off state are
attached to the CIM crossbars to compensate for the finite on/off
ratio effect. The SRAM-based Digital CIM PEs, following [21], are
adopted for Dynamic VMM operations. The ratio of ACIM to DCIM
PEs is set at 3:1, reflecting the predominance of Static VMMs among
all VMM operators. Both DCIM and ACIM PEs maintain the same
computation size, enabling seamless weight sharing between CIM
PEs without data concatenation or splitting.

Memory Units are distributed SRAM-based on-chip buffers. We
distribute MUs in the middle of each Heterogeneous CIM Block to
facilitate memory access for shortcut staging and potential DRAM
data buffering.

To handle the various and complex non-linear operations (e.g.
Softmax, LayerNorm, Gelu, and Square Root), programmable SIMD
PEs are introduced which support INT8 approximation following
[22]. We also map Reduction operations to facilitate partial sum
accumulation. All SIMDs are shared and distributed between cross-
type CIM PEs.

B. Flat Interconnect Hierarchy

To facilitate more flexible cross-type PE communication, we adopt
a flat NoC hierarchy. Compared with traditional CIM designs whose
NoC interconnected and scheduling units are 3-level Tiles (Crossbar-
PE-Tile), our design interconnects 2-level PEs (Crossbar-PE) via NoC
to provide more communication resources and efficiency. In the Tile
hierarchy, a PE can be scheduled for new tasks until the intra-Tile bus
is available (may occupied by other PEs) for data transmission, which
is inefficient for cross-type PE collaboration. In our architecture,

Reduction
Ops

INR Routing
Deadlock
Analysis

INR Orchestrator

Hybrid
Config

Op Profiling
Hybrid

Parallel Info
Hybrid Dataflow Predictor

Mapping
Instruction
Generation

DNN Models Partition &
Weight Duplication

CIM Architecture

Execution

Op List Enable
Hybrid Dataflow?

Enable
INR?

Behavior Tables

Fig. 2 Compilation Framework

Each PE is independently schedulable to initiate data transmission
and computation at an earlier stage. This design especially benefits
our proposed Hybrid Dataflow (VMMs on cross-type CIMs) and In-
Network Reduction (Reductions from various CIMs).

C. Scale-up Design

The proposed architecture is designed for scalability to accom-
modate larger model sizes. We apply a spatial dataflow for ACIM
PEs where static weights are all stored on-chip with temporary
dataflow for DCIM PEs. To scale for larger networks, the number of
ACIM units is increased to handle all Static VMM weights, ensuring
sufficient DCIM capacity for the largest Dynamic VMM operator. The
architecture enables the stitching of four Heterogeneous CIM blocks
into a larger block, with DCIMs centrally positioned for weight
duplication. Once sufficient DCIMs are in place, ACIM PEs are added
in concentric rings from the edges of the large block, forming the
final architecture, as depicted in Fig. 1.

D. Compilation Framework

An end-to-end compilation framework has been implemented for
the proposed architecture. The general flow is shown in 2. The
target DNN model and CIM architecture configurations are input
into the framework. The compiler first partitions operators in the
model and conducts weight duplication (the duplication factor is pre-
defined in the input configuration). The partitioned operators are then
mapped to PEs. We adopt a typical zigzag mapping strategy for NoC-
interconnected PEs. After mapping, each PE generates its executable
instructions according to its allocated operators. Finally, the simulator
starts its execution.

The compilation framework also contains optimization processes
for Hybrid Dataflow and In-Network Reduction, which will be
explained in Section IV-C and Section V-B3.

IV. HYBRID DATAFLOW

A. Dataflow Principles

To unlock the potential of fine-grained designs, we incorporate
dataflow architectures principles [23], [24]. In this framework, com-
putation or communication tasks are executed immediately upon sat-
isfying dependencies. We partition row-wise operators (e.g., VMM,
Weight-Writing, LayerNorm, Softmax), enabling row-by-row execu-
tion instead of layer-by-layer execution.

B. Dataflow Design

We proposed a novel dataflow for heterogeneous CIM architectures
that efficiently utilizes idle DCIMs for weight duplication to support
the Static VMM operations of ACIMs, shown in Fig. 3 (a). Weight
duplication is a widely adopted technique that enhances computation
parallelism by copying weights to multiple ACIMs with additional
PEs.

In heterogeneous CIM architectures, it is common for one type
of PE to be idle while the other type is active. This may be due
to operator ordering in models and the distinct designs of operators,
such as the separation of dynamic and static VMMs. Consequently,
opportunities for cross-type PE reuse are often overlooked.

The proposed dataflow leverages the weight-stationary properties
and mapping types of both ACIM and DCIM. When DCIMs are
idle, weights are read from ACIMs, transferred to and written into
DCIMs, thereby increasing parallelism for Static VMM operations.
This strategy effectively enhances PE utilization in the heterogeneous
architecture compared to previous proposals.

Owing to the reusable nature of DCIM, it is often utilized in a
fully parallel manner to accelerate operations. When reuse occurs,
weights must be read and written in advance. As a result, the hybrid
dataflow is particularly well-suited for Static VMMs (e.g., QKV
Projection and FFN) that have a certain interval since their last
DCIM computation, effectively hiding the latency associated with
weight movement. In cases where the subsequent operation is also
mapped to DCIM, choosing the appropriate degree of parallelism can
optimize the pipeline between operators, ultimately enhancing overall
system performance. To minimize the overhead of weight duplication,
we implement a weight duplication pipeline that follows a row-
by-row pattern—compromising Read Weights, Transfer, and Write
Weights—to hide the latency of weight movements. Figure 3 (b)
presents the execution timeline of QKV projection operations with
Hybrid Dataflow.

The Hybrid Dataflow can be further extended to more types of

R

ACIM

R

ACIM

R

ACIM

R

ACIM

R

DCIM

R

DCIM

R

DCIM

R

DCIM

"ReadWeights"
"Transfer"

"ReadWeights" "WriteWeights"
"Transfer"

 Weight Duplication
"WriteWeights"

Static VMM
Cross-Type
Static VMM

activation rows-0 activation rows-1

Hybrid Static VMM

(a) Mapping and Execution Process of Hybrid Static VMM

(b) Timeline for QKV Projection Operations with Hybrid Dataflow

ACIM

DCIM

SIMD

ReadWeight
row0

LayerNorm

Transfer
Weights-row0

WriteWeights
row0

Cross-Type
QKV Projection

QKV Projection

idle

ReadWeight
row1

Transfer
Weights-row1

WriteWeights
row1

Transfer
Acts-row0 (ACIM)

Transfer
Acts-row1(DCIM)

Shortcut

FC

...
Transfer

Acts-rowN

...
WriteWeights

rowN

...
ReadWeight

rowN

...
Transfer

Weights-rowN

idle

idle

idle

Fig. 3 Hybrid Dataflow

heterogeneous PEs, which we leave as future work. For instance,
idle SIMD units could be leveraged to collaboratively execute ACIM
or DCIM operations. By leveraging similarities between cross-type
PEs in heterogeneous architectures, spatial parallelism can be signif-
icantly enhanced even when model structures constrain pipeline or
homogeneous operation parallelism.

C. Hybrid Dataflow Compilation Process

The Hybrid Dataflow compilation process has been integrated into
our end-to-end compilation framework, as shown in Fig.2. After
partitioning and weight duplication, the operation list is processed
via Hybrid Dataflow Predictor. Based on the hybrid configuration
(e.g. mapping Static VMM on cross-type DCIMs), the predictor
automatically profiles the target operator to check IDLE resources
at runtime. After profiling, a hybrid parallel indicating the cross-type
operator parallelism is delivered to the mapping process.

V. IN-NETWORK REDUCTION

A. INR Overview

The proposed In-Network Reduction brings the following benefits.
Both additional routing to reduction units and overall transmission
amounts can be reduced, alleviating traffic congestion. Besides, the
reduction latency can be overlapped with the router pipeline stages.

Three core issues need to be addressed for the INR mechanism.
The first issue is how to route a group of source nodes through
a shared reduction path. So we adopt software scheduled routing
instead of traditional hardware routing (Section V-B1), ensuring that
the source nodes can share the path by pre-compilation (Section
V-B3). Secondly, due to the potential for NoC congestion, different
source messages may arrive asynchronously. This requires that: 1) the
destination node should recognize reduction messages by a unique
ID representing the source group, rather than a specific message
ID (Section V-B1); and 2) specially designed routers capable of
capturing asynchronous source flits (Section V-C). The third issue is
the deadlock risk in INR for heterogeneous architectures with cross-
type reduction. We address this through specialized routing algorithm
design (Section V-B2) and deadlock analysis during compilation
(Section V-B3).

B. Software Scheduled Routing

1) INR Flow Mechanism: Our design utilizes software scheduling
to precompute the routing for each INR operation. Compared to
hardware routing, this approach not only reduces the complexity of
routing in terms of runtime logic and hardware overheads but also
leverages global awareness to determine how to route source nodes
onto a shared reduction path.

We define a Reduction operation mapped to INR as a flow. The
destination node identifies reduction messages by a Flow ID (FID),
rather than a specific Message ID (MID). During compilation, each
INR operation is assigned a unique Flow ID. For the routing of each
flow, the locations of the source nodes and the destination node are
taken into account, and the reduction orders and routing within each
flow are precomputed during compilation. The routing information
is then written into the flow behavior table of each router along
the reduction path. During runtime, the routing information will be
retrieved from the table.

2) Routing for Heterogeneous Architecture: In homogeneous ar-
chitectures, INR deadlock can be avoided through sequential mapping
and routing. However, for heterogeneous architectures, the types of
source nodes may differ, and the source and destination nodes may
also vary in type. Due to the mixed layout of different types of PEs,

In-Block
Zigzag

Aggregation
Zigzag

to DST

Source
Node

Destination
Node

Aggregation
Source Node

✕ Deadlock!!

 Block 3 Block 2

 Block 0 Block 1 ✓ Pass
Intra-Block Zigzag Routing StrategyZigzag Routing Strategy

Fig. 4 Routing Strategies in Heterogeneous Architectures

routing may form circles (an example is depicted in Fig. 4), leading
to potential deadlock . Therefore, a considerate routing design is
essential.

Compared to point-to-point transmission, INR involves multiple
sources, requiring the determination of both the reduction order
and the routing. In a mesh topology, distance-based methods (e.g.,
determining the transmission order based on the distance from the
destination) can lead to path intersections, resulting in circles.

Based on observations of the distribution of reduction sources and
destinations, we find that:

• Most sources tend to appear in clusters. This is why previous
works adopted sequential routing (when sources and the des-
tination are distributed in the same row or column) or zigzag
routing (when distributed across different rows or columns).

• When the destination is located in the middle of a cluster of
sources (a characteristic of heterogeneous architectures), routing
circles are difficult to avoid.

We propose an INR routing algorithm called Intra-Block Zigzag.
It retains the basic zigzag routing to leverage the characteristic of
sources appearing in clusters, but ensures that the destination of each
zigzag is always at the corner of the source cluster to avoid deadlock.

Intra-Block Zigzag, as shown in Fig. 4, consists of three stages.
For each flow, the source nodes are divided into a maximum of four
blocks by the destination node. In the first stage, In-Block Zigzag, the
sources within each block form INR routing in a zigzag manner. In
the second stage, Aggregation Zigzag, the last source in each block
performs INR in a zigzag manner. In the third stage, toDST, the last
source from the aggregation stage is routed to the destination. During
the entire process, the zigzag direction in each stage can be reversed
to prevent forming circles between stages.

3) INR Compilation Process: As shown in Fig. 2, after mapping,
all Reduction operators are sent to the INR Orchestrator. Corre-
sponding flows and routing are generated based on the specified
routing algorithm. A deadlock analysis module is implemented based
on the model structure, which analyzes potential circles between
specified flows and other NoC transmissions in the timespan of
concurrent operators. If a deadlock risk is detected, the INR routing
is iteratively regenerated by reversing each zigzag’s direction. If the
deadlock cannot be resolved by any reversing, we select the flow
with the fewest sources involved in the formed circle and remap it to
SIMD units instead. Once no deadlock risk remains, the flow routing
information is written into the behavior table of routers.

C. Active Router

We integrate INR functionalities with the original pipelines of
multi-stage pipelined routers and name them active routers. Figure 5

Input
Channel 1
Channel 2

Channel N
...

/

N×/

/

/
N×

N×

Output

FID V Flit FIFO

N×

/
N×

FID/MID Out Port R Behavior Tables Operand Buffers

Vector Adders Mux and Path Reg

Route Computation VC Allocation Switch Allocation Switch Traversal

Fig. 5 Microarchitecture of Active Router

shows the microarchitecture of the active router, with colored ele-
ments indicating the new components added.

Behavior Tables: used to obtain pre-computed routing informa-
tion. A Common Behavior Table is for non-INR messages while a
Flow Behavior Table is for INR messages. Flow Behavior Table is
separated from the common one due to the asynchronism of INR
making it hard to predict the specific Message ID. During Route
Computation, active routers do not compute routing and turn to read
results from behavior tables.

Both Behavior Tables have multiple entries of output ports indexed
by the Message ID or Flow ID. For the Flow Behavior Table, an
additional bit (R) is added to each entry, indicating whether the flow
message will be reduced in this router.

Operand Buffers: used to deal with the asynchronous arrival of
source messages. For the first arrived source, its flits will be reserved
in the Flit FIFO of Operand Buffers. During Route Computation,
Operand Buffers are looked up for the head flit of each reduction
message (when only one reduction message of a flow is input). If
another source has been staged in the buffer, both sources will be
directed to Shared Vector Adders. Otherwise, the reduction message
will be staged to a buffer entry during VC Allocation.

Each Flit Buffer is indexed by its Flow ID. A valid bit (V) indicates
if a source has been reserved in the Flit FIFO.

Shared Vector Adders: used for conducting reduction operations.
It is shared by all channels. The resource contention for the adder will
be avoided during compilation. The Reduction operation is performed
during Switch Allocation.

MUX and Path Registers: used for path navigation. The reduction
flits in active routers may be navigated from/to Operand Buffers,
Shared Vector Adders, and channels. We add Multiplexers and
Path Registers to support diverse path configurations. These register
control signals will be generated during Route Computation.

VI. EVALUATION

A. Experimental Setup

1) Hardware Modeling: We developed a cycle-level simulator for
NoC-based heterogeneous CIM architecture. Digital CIM data is
from [21] and scaled to 22nm via [25] while analog CIM data is
extracted from NeuroSim v1.3 [26]. SIMD modules for non-linear
operations are implemented in NeuroSim following [22]. To estimate
NoC performance, we extend and integrate BookSim [27] and obtain
power results from the DSENT power model [28]. PPA data of
off-chip DRAM access is obtained from CACTI [29]. We modify
NeuroSim v2.1 [30] to evaluate the non-ideal effects.

The system configuration is summarized in Table I. The number
of ACIMs is configured to store all Static VMM weights, while the
number of DCIMs is set to exceed the required resources by the
largest Dynamic VMM layer.

TABLE I Experimental Setup
Module Parameter Value

Analog CIM

Cell Type 2-bit RRAM; Ron-6KΩ; On/Off-17 [31]
Crossbar size 128x128
ADC Config 8-bit Flash ADC; Shared by 8 cols

Device Non-ideality DriCoe-0.001˜0.005; LTP-1.75, LSP-1.46
Read Voltage 0.3V

Digital CIM Cell Type 1-bit SRAM
Subarray size 128x256

SIMD Vector Size 16
NoC Message Size 128 Bytes; 128-bit Flit

System

Quantization W8A8; I-ViT [22]
Clock Frequency 200MHz

Technology 22nm

Computation Granularity 1x1 ACIM: 1 Crossbar/PE; DCIM: 1 Subarray/PE
2x2 ACIM: 4 Crossbars/PE; DCIM: 4 Subarrays/PE

2) Benchmarks: We evaluate our proposed designs using two
representative Vision Transformers (ViTs): DeiT-Tiny and DeiT-
Small [4], using the ImageNet 2012 dataset [32].

B. Performance and Energy Evaluation

Since patch merging [33] and pruning [34] have been emerging
trends for ViT, we evaluate various patch token counts (i.e., SL) for
DeiT-Tiny and DeiT-Small layers.

Considering the impracticability of RRAM-based HomoACIM (as
depicted in Section VI-C), we only focus on heterogeneous CIMs and
Homogeneous DCIM (HomoDCIM) for evaluation. We determine the
DCIM PE resources for HomoDCIM under the same area budgets as
heterogeneous CIMs. Due to the high density of RRAM, DCIM PEs
are 2.95× to 5.42× larger than RRAM ACIM PEs in our experiments.
As a result, HomoDCIM has a 3.64× (DeiT-Tiny) and 2.66× (DeiT-
Small) smaller weight capacity. A temporal dataflow is employed for
HomoDCIM, requiring loading weights from DRAM.

For Heterogeneous CIMs, we first adopt the proposed architecture
with the isolated mapping for heterogeneous PEs (as in previous
work) and the original Row-by-Row Dataflow as a baseline (Iso-
latedMap). We also implement an X-Former [7] like architecture
but tailored for a fine-grained NoC-based design (XFormerLike). A
block factor of 4 is applied to the Sequence Blocking Dataflow of
X-Former, partitioning the sequence length into 4 blocks. The block
factor = Sequence Length / Sequence Block (SB parameter used in
the X-Former paper), and we adopt a fixed block factor value to
balance the impact of different SB parameters. Then we evaluate the
proposed Hybrid Dataflow (HD) and INR separately and together.
Besides, INA [19] is implemented in our framework as a baseline
of In-Network Reduction. Since it only supports simple sequential
routing (which we extended to zigzag routing for cross-row/column
traversal), it may fail to route complex INR flows. When routing fails,
we fall back to mapping the INR operation to SIMD modules.

As shown in Fig. 6, the proposed heterogeneous CIMs (Isolat-
edMap) archive a maximum speedup of 16.67× and an average
speedup of 3.57× compared to HomoDCIM, as well as an average
energy efficiency improvement of 2.78×. This is because the expen-
sive DRAM access, which is difficult to overlap with other operations
in HomoDCIM, has dominated the total latency and energy.

The Row-by-Row dataflow achieves results comparable to Se-
quence Blocking Dataflow due to their shared fine-grained design,
but the latter improves upon this by partitioning Q×K operators
into smaller blocks. While dependencies in Softmax operations limit
pipeline length, smaller blocks enable early transmission, efficient
weight-writing, and help satisfy row-wise dependencies in Softmax.

Optimized by Hybrid Dataflow, an average speedup of 1.93× and
energy efficiency improvement of 1.56× can be achieved over the
baseline with isolated mapping and Row-by-Row dataflow. Compared
to the XFormer-like design, Hybrid Dataflow also achieves an average
speedup of 1.82× and an average energy efficiency improvement

Deit-T
iny-SL16

Deit-T
iny-SL32

Deit-T
iny-SL64

Deit-S
mall-2

x2-SL16

Deit-S
mall-2

x2-SL32

Deit-S
mall-2

x2-SL64

Deit-S
mall-1

x1-SL16

Deit-S
mall-1

x1-SL32

Deit-S
mall-1

x1-SL64
0

1

2

3

4

5

6

7

8

Sp
ee

du
p

HomoDCIM IsolatedMap XFormerLike Hybrid Dataflow
INA INR Hybrid Dataflow + In-Network Reduction

Energy Efficiency

0

1

2

3

4

5

6

7

8

En
er

gy
 E

ff
ic

ie
nc

y

Fig. 6 Speedup and Normalized Dynamic Energy Over
Heterogeneous CIMs (isolated mapping)

of 1.46×. Both Row-by-Row and Sequence Blocking Dataflows
share a common approach of partitioning row-wise operations to
enable finer-grained access and execution between different types of
PEs. However, the benefits of this approach are primarily limited to
the QKV Projection and Q×K operations due to the dependency
constraints imposed by the Softmax operations. In contrast, the
Hybrid Dataflow leverages the idle PE types to facilitate static
VMMs, providing more opportunities for efficiency in Transformer
models. In the case of DeiT-Small, when the NoC size is partitioned
into finer-grained hardware, Hybrid Dataflow achieves greater perfor-
mance improvements, demonstrating that additional communication
resources benefit cross-type weight duplication. In contrast, X-Former
shows relatively similar speedup ratios under different granularities.

The INR design demonstrates a speedup of 3.37× and a 2.63×
energy efficiency improvement over the IsolatedMap baseline on
average, as well as a speedup of 1.63× and a 1.47× energy efficiency
improvement over INA, owing to the transmission reduction in ad-
vance and reduced routing. Compared to INA, the performance shows
comparable performance on DeiT-Tiny layers with 1×1 granularity
and DeiT-Small layers with 2×2 granularity. This is because the num-
ber of source nodes for reduction operations in these cases is limited
and their distribution is less complex, allowing both INA and INR
to successfully route all reduction operations. However, under fine-
grained hardware configurations and larger models, INR demonstrates
significantly superior performance over INA. For instance, on DeiT-
Small layers with 1×1 granularity, INR achieves 4.28× speedup and
3.17× energy efficiency improvement over INA on average. This
is because INA’s simple sequential routing algorithm fails to handle
the intricate distribution of source nodes in large-scale heterogeneous
architectures, causing many cases to fall back to SIMD modules. As
model size increases, the INA exhibits a higher routing failure rate
(e.g., 2/21 in DeiT-Small and 12/51 in DeiT-Base), while the INR
consistently achieves valid routing solutions. Consequently, INA can
only deliver limited performance gains.

Combining with Hybrid Dataflow, the HD-INR architecture can
further speed up by 4.91×, with a 2.64× energy efficiency improve-
ment. Compared with the XFormer-like design, a 4.63× speedup, and
a 2.47× energy efficiency improvement are achieved. Results show
great potential for cross-type collaboration in heterogeneous CIMs.

C. Accuracy Validation

In this section, the accuracies of heterogeneous CIMs (HeteCIM),
homogeneous RRAM-based ACIM (HomoACIM), and homogeneous
DCIM (HomoDCIM) are compared. ADC quantization and device

Fig. 7 Accuracy with ADC and Device Non-Ideal Effects. Bars
represent ADC effects (bottom x-axis); point-line plots indicate

device parts (top x-axis).

non-idealities are included for ACIM parts. For device non-idealities,
we consider cell variation, static data retention, and the non-ideal
properties of weight updates. The finite on/off ratio impact is not
incorporated, as prior work has demonstrated that it can be effectively
mitigated via the dummy column scheme [35].

With ADC quantization effects, as shown in Fig. 7, the accuracy
of both Homogeneous ACIM and Heterogeneous CIMs drops sharply
when the ADC resolution is six bits or lower, rendering them
ineffective. When the ADC resolution reaches 8 bits or higher, the
accuracy loss is negligible, which is less than 1%.

As shown in Fig. 7, the accuracy of RRAM-based HomoACIM
drops to 0.12% (DeiT-Tiny) and 1.38% (Deit-Small) due to the
substantial overhead associated with weight updates, making it un-
suitable for Transformer models. In contrast, heterogeneous CIMs
demonstrate significant potential, achieving 71.88% (DeiT-Tiny) and
79.74% (DeiT-Small) accuracy when DriCoe = 0.001 for a times-
pan of 10s. It is worth noting that periodic weight calibration is still
necessary for heterogeneous CIM, especially when DriCoe ≥ 0.003.
Device engineering [36] and circuit-device co-design [37] can further
alleviate effects, which is out of the scope of this work.

VII. CONCLUSION

Transformer models have revolutionized AI tasks with their ex-
ceptional performance. However, they face significant computational
and memory efficiency challenges due to their scale and complexity.
Our solution integrates a heterogeneous analog/digital CIM architec-
ture for Vision Transformers, combining RRAM-based analog and
SRAM-based digital CIMs with a hybrid dataflow and In-Network
Reduction. The architecture alone achieves 3.57× speedup and 2.78×
energy efficiency improvement over homogeneous DCIM, while the
Hybrid Dataflow and INR further deliver 4.63× speedup and 2.59×
energy efficiency improvement over X-Former-like designs. These
results highlight the critical role of architecture-dataflow co-design
in maximizing heterogeneous CIM potential for AI acceleration.

ACKNOWLEDGMENT

This work was supported in part by the Guangdong Basic
and Applied Basic Research Foundation (No. 2023A1515110353),
the Department of Education of Guangdong Province (No.
2024KTSCX037), the Guangdong Science and Technology Depart-
ment (No. 2025B1212150003), the Guangdong Provincial Project
(No. 2023QN10X252), and GDIC.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention Is All You Need,” Advances in
Neural Information Processing Systems, 2017.

[2] H. Jiang, S. Huang, and S. Yu, “Compute-in-Memory Architecture,” in
Handbook of Computer Architecture, A. Chattopadhyay, Ed. Singapore:
Springer Nature Singapore, 2023, pp. 1–40.

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An Image Is Worth 16x16 Words: Transformers for Image Recognition
at Scale,” arXiv preprint arXiv:2010.11929, 2020.

[4] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training Data-Efficient Image Transformers & Distillation
Through Attention,” in International Conference on Machine Learning,
2021.

[5] A. F. Laguna, M. M. Sharifi, A. Kazemi, X. Yin, M. Niemier, and
X. S. Hu, “Hardware-Software Co-Design of an In-Memory Transformer
Network Accelerator,” Frontiers in Electronics, 2022.

[6] S. Jain, H. Tsai, C.-T. Chen, R. Muralidhar, I. Boybat, M. M.
Frank, S. Woźniak, M. Stanisavljevic, P. Adusumilli, P. Narayanan,
K. Hosokawa, M. Ishii, A. Kumar, V. Narayanan, and G. W. Burr,
“A Heterogeneous and Programmable Compute-In-Memory Accelerator
Architecture for Analog-AI Using Dense 2-D Mesh,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 2023.

[7] S. Sridharan, J. R. Stevens, K. Roy, and A. Raghunathan, “X-Former:
In-Memory Acceleration of Transformers,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2023.

[8] S. Liu, C. Mu, H. Jiang, Y. Wang, J. Zhang, F. Lin, K. Zhou, Q. Liu,
and C. Chen, “HARDSEA: Hybrid Analog-ReRAM Clustering and
Digital-SRAM In-Memory Computing Accelerator for Dynamic Sparse
Self-Attention in Transformer,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2023.

[9] W. Li, M. Manley, J. Read, A. Kaul, M. S. Bakir, and S. Yu, “H3DAtten:
Heterogeneous 3-D Integrated Hybrid Analog and Digital Compute-
in-Memory Accelerator for Vision Transformer Self-Attention,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2023.

[10] Y. Luo and S. Yu, “H3D-Transformer: A Heterogeneous 3D (H3D) Com-
puting Platform for Transformer Model Acceleration on Edge Devices,”
ACM Transactions on Design Automation of Electronic Systems, 2024.

[11] P. Dhingra, J. Doppa, and P. P. Pande, “HeTraX: Energy Efficient 3D
Heterogeneous Manycore Architecture for Transformer Acceleration,”
in Proceedings of the 29th ACM/IEEE International Symposium on Low
Power Electronics and Design (ISLPED), 2024.

[12] Y. Qiu, Y. Ma, M. Wu, Y. Jia, X. Qu, Z. Zhou, J. Lou, T. Jia, L. Ye,
and R. Huang, “Quartet: A 22nm 0.09mJ/lnference Digital Compute-in-
Memory Versatile AI Accelerator with Heterogeneous Tensor Engines
and Off-Chip-Less Dataflow,” in 2024 IEEE Custom Integrated Circuits
Conference (CICC), 2024.

[13] G. Yin, Y. Chen, M. Lee, X. Du, Y. Ke, W. Tang, Z. Chen, M. Zhou,
J. Yue, H. Yang, H. Jia, Y. Liu, and X. Li, “A 28nm 8928Kb/mm2-
Weight-Density Hybrid SRAM/ROM Compute-in-Memory Architecture
Reducing >95% Weight Loading from DRAM,” in 2024 IEEE Custom
Integrated Circuits Conference (CICC), 2024.

[14] J. Cai, M. A. Kaleem, R. Genov, M. R. Azghadi, and A. Amir-
soleimani, “In-Memory Transformer Self-Attention Mechanism Using
Passive Memristor Crossbar,” in 2024 IEEE International Symposium
on Circuits and Systems (ISCAS), 2024.

[15] A. Moradifirouzabadi, D. S. Dodla, and M. Kang, “An Analog and
Digital Hybrid Attention Accelerator for Transformers with Charge-
based In-Memory Computing,” in 2024 IEEE European Solid-State
Electronics Research Conference (ESSERC), 2024.

[16] C. Wang, Z. Chen, and S. Huang, “MICSim: A Modular Simulator for
Mixed-signal Compute-in-Memory based AI Accelerator,” in Proceed-
ings of the 30th Asia and South Pacific Design Automation Conference,
2025.

[17] B. Wang, J. Zhou, W.-F. Wong, and L.-S. Peh, “Shenjing: A Low
Power Reconfigurable Neuromorphic Accelerator with Partial-Sum and
Spike Networks-on-Chip,” in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2020.

[18] K. Zhou, Y. He, R. Xiao, J. Liu, and K. Huang, “A Customized
NoC Architecture to Enable Highly Localized Computing-on-the-Move
DNN Dataflow,” IEEE Transactions on Circuits and Systems II: Express
Briefs, 2021.

[19] B. Tiwari, M. Yang, X. Wang, and Y. Jiang, “In-Network Accumulation:
Extending the Role of NoC for DNN Acceleration,” in 2022 IEEE 35th
International System-on-Chip Conference (SOCC), 2022.

[20] J. Lee, A. Lu, W. Li, and S. Yu, “Neurosim v1.4: Extending Technology
Support for Digital Compute-in-Memory Toward 1nm Node,” IEEE
Transactions on Circuits and Systems I: Regular Papers, 2024.

[21] J. Chen, F. Tu, K. Shao, F. Tian, X. Huo, C.-Y. Tsui, and K.-T.
Cheng, “AutoDCIM: An Automated Digital CIM Compiler,” in 2023
60th ACM/IEEE Design Automation Conference (DAC), 2023.

[22] Z. Li and Q. Gu, “I-ViT: Integer-Only Quantization for Efficient Vision
Transformer Inference,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023.

[23] C. Bai, X. Wei, Y. Zhuo, Y. Cai, H. Zheng, B. Yu, and Y. Xie, “Klotski:
DNN Model Orchestration Framework for Dataflow Architecture Ac-
celerators,” in 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD), 2023.

[24] R. Pelke, J. Cubero-Cascante, N. Bosbach, F. Staudigl, R. Leupers, and
J. M. Joseph, “CLSA-CIM: A Cross-Layer Scheduling Approach for
Computing-in-Memory Architectures,” in 2024 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2024.

[25] S. Sarangi and B. Baas, “DeepScaleTool: A Tool for the Accurate
Estimation of Technology Scaling in the Deep-Submicron Era,” in 2021
IEEE International Symposium on Circuits and Systems (ISCAS), 2021.

[26] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “DNN+NeuroSim: An
End-to-End Benchmarking Framework for Compute-in-Memory Accel-
erators with Versatile Device Technologies,” in 2019 IEEE International
Electron Devices Meeting (IEDM), 2019.

[27] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J. Kim, and W. J. Dally, “A Detailed and Flexible Cycle-Accurate
Network-on-Chip Simulator,” in 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2013.

[28] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S.
Peh, and V. Stojanovic, “DSENT - A Tool Connecting Emerging Photon-
ics with Electronics for Opto-Electronic Networks-on-Chip Modeling,”
in 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip
(NOCS), 2012.

[29] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories,” ACM Transactions on Architecture and
Code Optimization, 2017.

[30] X. Peng, S. Huang, H. Jiang, A. Lu, and S. Yu, “DNN+NeuroSim V2.0:
An End-to-End Benchmarking Framework for Compute-in-Memory
Accelerators for On-Chip Training,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2021.

[31] P. Jain, U. Arslan, M. Sekhar, B. C. Lin, L. Wei, T. Sahu, J. Alzate-
Vinasco, A. Vangapaty, M. Meterelliyoz, N. Strutt et al., “13.2 A 3.6Mb
10.1Mb/mm2 Embedded Non-Volatile ReRAM Macro in 22nm FinFET
Technology with Adaptive Forming/Set/Reset Schemes Yielding Down
to 0.5V with Sensing Time of 5ns at 0.7V,” in 2019 IEEE International
Solid-State Circuits Conference-(ISSCC), 2019.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet Large
Scale Visual Recognition Challenge,” International Journal of Computer
Vision, 2015.

[33] Y. Wang, R. Huang, S. Song, Z. Huang, and G. Huang, “Not All Images
Are Worth 16x16 Words: Dynamic Transformers for Efficient Image
Recognition,” Advances in Neural Information Processing Systems,
2021.

[34] Y. Xu, Z. Zhang, M. Zhang, K. Sheng, K. Li, W. Dong, L. Zhang,
C. Xu, and X. Sun, “Evo-ViT: Slow-Fast Token Evolution for Dynamic
Vision Transformer,” Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

[35] S. Huang, H. Jiang, and S. Yu, “Hardware-Aware Quantization/Mapping
Strategies for Compute-in-Memory Accelerators,” ACM Transactions on
Design Automation of Electronic Systems, 2023.

[36] I. Giannopoulos, A. Sebastian, M. Le Gallo, V. Jonnalagadda, M. Sousa,
M. Boon, and E. Eleftheriou, “8-bit Precision In-Memory Multiplication
with Projected Phase-Change Memory,” in 2018 IEEE International
Electron Devices Meeting (IEDM), 2018.

[37] S. Ambrogio, M. Gallot, K. Spoon, H. Tsai, C. Mackin, M. Wesson,
S. Kariyappa, P. Narayanan, C.-C. Liu, A. Kumar, A. Chen, and G. W.
Burr, “Reducing the Impact of Phase-Change Memory Conductance
Drift on the Inference of large-scale Hardware Neural Networks,” in
2019 IEEE International Electron Devices Meeting (IEDM), 2019.

