Harmony: A Hardware-Mapping Co-Exploration
Framework for Hybrid CIM-based Vision
Transformer Accelerator

Abstract—Computing-in-memory (CIM) architectures have suc-
cessfully enhanced convolutional neural network (CNN) perfor-
mance, but the automation of high-performance CIM-based trans-
former accelerators is still challenging. Specifically, the design space
of hardware design and mapping is extremely large due to the
complex model structure and data flow. To address this problem,
we propose Harmony, a hardware and mapping co-exploration
framework to optimize the hybrid CIM-based vision transformer
accelerator. We define a universal design space representation for
implementing vision transformers in CIM-based accelerators that
support hybrid and heterogeneous features. The corresponding
design space comprises the hardware configuration of CIM macros
and their spatial mapping scheme. Furthermore, we propose the
knowledge-guided grid search (KGGS) algorithm and improved
genetic algorithm (IGA) to boost exploration efficiency. The or-
thogonal experiment and dominance analysis of KGGS could obtain
the exploration probabilities of different parameters and ensure its
stability, while the unique order crossover and swapping mutation
of IGA could retain relative order to avoid legalization processes
during the iteration. Performance experimental results show that
Harmony achieves 48% area reduction, 13% latency reduction, 32%
energy reduction, and 1.27 x energy efficiency on average compared
with the baseline. The accuracy experiment demonstrates that our
hybrid architecture achieves a trade-off between accuracy and
performance compared with all-SRAM CIM-based accelerators.

Index Terms—computing-in-memory, mapping optimization, de-
sign space exploration, vision transformer

[. INTRODUCTION

Many studies have proved the abilities of Computing-in-
memory (CIM) to accelerate deep neural networks (DNNs) and
substantively improve performance and energy efficiency [1]-
[3]. However, implementing CIM-based Al accelerators specif-
ically for the transformer architecture introduces several chal-
lenges, which are outlined below:

For hardware design, the main challenge is determining
the optimal CIM macro configurations. On the one hand, the
solution space combined by macro size, circuit configuration,
and other parameters is as enormous as 10'° [4], which calls
for efficient search algorithms. Previous studies often take hours
or even days, so the efficiency of these algorithms limited the
exploration of architectural optimization. On the other hand,
most existing studies on hardware configuration design space
exploration fail to adequately align with emerging accelerator
design paradigms characterized by hybrid SRAM/RRAM [5]-
[9] and heterogeneous CIM macro sizes [4], [5]. As evidenced
by Fig. 1, the substantial variation in optimal configurations
across different transformer layers fundamentally necessitates
heterogeneous architectural solutions. Furthermore, our analysis
in V demonstrates that strategically replacing SRAM-based CIM

4+ Min Energy Point
Min Latency Point

% Max TOPS Point
A Min Area Point

-
o

Normalized Tops/W
«

14

~ -
rooSgRY
Normalized Tops/w

6

osgp, 8

9
6 & ow
10 s 1 (logyy 10

(a) (b)
Fig. 1 Energy efficiency results from exploring CIM crossbar
row size, CIM crossbar column size, and CIM macro row size
for ViT-base’s two layers.

macros with RRAM-based CIM macros in some transformer lay-
ers enables superior accuracy-performance trade-offs compared
to all SRAM designs.

For spatial mapping (SPM), the main challenge stems from
the change of data flow. Because of the transformer’s larger
scale and complex data flow, some CIM-based accelerators use
NoC to replace H-tree. Unlike H-tree, a NoC-based interconnect
scheme sometimes needs to transform outputs from one CIM tile
to another directly, rather than the global buffer. So, the spatial
position of CIM tiles is no longer irrelevant because it determines
the latency and energy of data flow transmission. Previous
works focus on weight matrix transformation [10], partition, and
duplication [11] for the convolution layer. They usually apply a
layer-sequential mapping strategy [12] or greedy algorithm [13]
to place layers with the largest data movement in the center of the
accelerator. This simple solution limits the opportunities to fully
optimize communication, which becomes increasingly important
as the scale of accelerators and the structural complexity of
networks increase. The transformer’s complex network structure
increases the bandwidth pressure of NoC because of the sharing
or interleaving of data paths, which blocks the data movement
and harms the latency and throughput. So, Harmony aims to
optimize the spatial mapping strategy to reduce the impact of
other communication flows.

To address these problems, we propose Harmony, a
hardware-mapping co-exploration framework for hybrid
CIM-based vision transformer accelerator. It supports various
CIM device types and configurations, and its mapping space
reflects the resource allocation and data dependencies of each
layer and tile. Harmony includes a hardware exploration engine
with a knowledge-guided grid search (KGGS) and a mapping

engine using an improved genetic algorithm (IGA) to explore
the design space efficiently. In summary, our contributions are
as follows:

o We present a universal hardware template for the CIM-
based Al accelerator, which considers the design space of
hybrid and heterogeneous features of CIM macros.

« We propose and implement efficient exploration algorithms,
including the knowledge-guided grid search algorithm and
the improved genetic algorithm.

o Based on the hardware template and exploration algo-
rithm, we develop Harmony, a hardware and mapping co-
exploration framework to generate CIM-based transformer
accelerators automatically.

o Compared to the baselines, Harmony’s co-optimized hard-
ware and mapping achieve 48% area reduction, 13% la-
tency reduction, 32% energy reduction, and 1.27x energy
efficiency on average.

The rest of the paper is organized as follows: Section II
introduces the background and motivation, Section III provides
the framework overview and design space, Section IV presents
the exploration algorithm, and Section V conducts experimental
evaluations, Section VII summarizes our work and future direc-
tions.

II. BACKGROUND

A. Design Automation of CIM-based Accelerator

Traditional CIM-based accelerators highly rely on designers’
experience, and the architecture changes with neural network
configuration. Some recent studies have tried to achieve the au-
tomatic design tool, usually including a design space exploration
engine to determine optimal parameters and a mapper to map
weight into the commuting array to reduce the cost of human and
time resources. As illustrated in Table I, NeuroSIM [12] uses a
greedy strategy to maximize the utilization rate of computing
resources, while PIM-HLS [14] prunes the design space to
accelerate design flow, both at the cost of the potential optimal
solution. The algorithms of PIMSYN [15], CoMN [13], and
[4] are time-consuming which usually require more than a few
hours and days. Besides, the spatial mapping space needs further
exploration, as shown above.

TABLE I Comparison of representative research and tools for
CIM-based accelerators.

Hardware Opt. -
Algorithm P Speed SPM Opt. Application
PIM-HLS [14] Enumeration - - CNN
NeuroSIM [12] Greedy algorithm Mins - CNN
PIMSYN [15] Evolution algorithm | Hours - CNN
[4] Beam search Hours - CNN
CoMN [13] Bayesian opt. Days v CNN
Ours KGGS Mins v Transformer

B. Vision Transformer

The transformer has become a critical deep learning architec-
ture with widespread application across computer vision (CV)
domains such as ViT [16], DeiT [17], and Swin transformer [18].
Although various variants exist, Vision Transformer (ViT) mod-
els typically rely on attention layers as their core components.

A multi-head self-attention (MHSA) block consists of
multiple operators, including linear projections (Linear

Architecture information ’ ViT Structure ‘
‘Arch. template | Sec. ITI-B ' Mapper | Sec. 1lI-C |
SIMD ! | Weight partition !

Global buffer

NoC
CIM Macro

Spatial mapping

/ Counts, dataflow, access number /

Simulator (" pICE (Nonlinear unit) Sec. V-A

DSENT (NoC)
v
/ Metric (throughput, area, etc) /
v
Algorithm
KGGS Sec. IV-A IGA Sec. IV-B

Orthogonal experiment
| fouamt o |
Dominance analysis
Swap mutation

¥
/ Desired architecture /

Fig. 2 Overview of Harmony Framework

Guided search

Wq, Wk, Wy) and output layer, dot product computation and
weighted sum (Matmul(Q, K) & Matmul(A,V)), as well as
scaling and softmax operations [19]. The MHSA mechanism
in transformer architectures enables the model to capture
relationships between distant pixels in an image, thereby
improving its ability to handle long-range dependencies.
However, the complexity of the network structure poses
significant challenges in designing an efficient accelerator. The
transformer architecture’s wide application has enhanced its
status as a foundational model in deep learning and artificial
intelligence, further inspiring the need for a specialized
hardware accelerator.

III. HARMONY FRAMEWORK

A. Overview

Our proposed framework, Harmony, is demonstrated in Fig. 2.
The framework receives vision transformer structures and basic
architecture information users determine as inputs. Harmony
instantiates different modules based on hardware templates au-
tomatically, and the mapping process determines their counts,
accelerator data flow, and access number of buffers. Then, we
develop a performance evaluator that includes SPICE simulation,
NeuroSIM [12], AutoDCIM [20], and DSENT [21] to estimate
the PPA of different parts. The metrics, such as latency, area,
and energy efficiency, will guide the exploration loop. Harmony
also has a knowledge-guided grid search algorithm to find the
optimal macro parameters and an improved genetic algorithm to
optimize the spatial mapping scheme. This flow iterates until the
desired optimized architecture is achieved.

B. Hardware Template

Harmony’s architecture template is derived by extracting com-
mon features from existing hybrid SRAM/RRAM CIM-based

@ ©
Fig. 3 The overview of architecture, (a) global architecture; (b)
CIM tile or CIM macro; (c) CIM crossbar.

accelerators and considering implementation [4]-[8], [22], [23].
Like NeuroSIM [12], the digital SRAM-based CIM module has a
two-level macro-crossbar structure [20]. RRAM-based CIM tiles
are connected in a 2D-mesh NoC, with internal connections via
an H-tree structure [12]. The RRAM-based CIM module has two
configurations placed on opposite sides for manufacturability
and connected to a NoC router. SRAM-based CIM tiles and other
modules are placed around the RRAM-based CIM module and
directly connected with the bus. SIMD core is the digital circuit
module that conducts various complex operations, including
accumulation, Softmax, GELU, and layer normalization.

Digital SRAM-based CIM Tiles: The basic macro archi-
tecture is based on AutoDCIM [20], with added input buffers.
It has four configurable parameters: (1) Crossbar row number
(X,),) Crossbar column number (X.), (3) Macro row number
(M,), and (4) Macro column number (M_.). The configuration is
represented as D = [X,., X., M,., M.]. Different configurations
impact the SRAM word line length, peripheral circuits, and
adder hierarchy, influencing area, latency, energy efficiency, and
PPA.

Analog RRAM-based CIM Tiles: This CIM tile, based on
NeuroSim, includes a CIM crossbar, ADCs, peripheral circuits,
and input buffers. Seven parameters define its configuration: (1)
Crossbar row number (X,.), (2) Crossbar column number (X.),
(3) Macro row number (M,), (4) Macro column number (M,),
(5) Tile row number (T)), (6) Tile column number (T,), and (7)
ADC shared column number (C,,). These affect the number of
resources (e.g., ADCs, word line length, and peripheral circuits)
and overall performance. The configuration is represented as
An = [Xr7 Xca Mr, Mca Tra ch Cm]

SIMD core: Leveraging a suite of fundamental functional
units built within NeuroSim, including shifters, registers, mul-
tiplexers, and adders, the critical performance data (such as la-
tency, power consumption, and area) for these units is accurately
modeled based on low-level circuit simulations. Building upon
this foundation, we further abstract and combine these elemental
modules to construct more complex computational functions,
such as multipliers, dividers, and maximum-value detectors, to
support various computational needs. Finally, based on instruc-
tions, the SIMD core can dynamically invoke the corresponding
computational module to execute parallel operations.

Y N e e N e e ' TABLE II Design space of CIM macro configurations
> : S]%%[S ! Component Descriptions Candidates
Global buffer B 1 32.64.128
B : X the row number of crossbar T A
= e
1 £l £l £l
I : : Xe the column number of crossbar 256,512,768
ACIM l= === S M, the number of crossbars 2,3,4.5
<> AR LLLCLLL LY 1 per row in the CIM macro
1 SL Switch ' M the number of crossbars 2345
SIMD : ° \O\ \O\ B \O\ \O\ 1 ¢ per column in the CIM macro T
ACM || [ACM B ! the number of macros
<> | ACIM C|8 \Q \O\ \O\ R : Tr per row in the CIM tile 2,3,4,5
, E \O\ \O\ -l Q] , T the number of macros 9
| —l — 1 ADC [ADC ADC [aDC | ! ¢ per column in the CIM tile T
: : Cm muxed column 1,2,4,8
------------ L; the RRAM-based CIM macro type of layer ¢ 1,2

C. Hardware Feature

Hybrid: Based on the device characteristics of SRAM and
RRAM, we achieve a hybrid CIM architecture. RRAM is typi-
cally used as the analog Compute-in-Memory (ACIM) device for
static weight matrix operations due to its low power consump-
tion, high device density, and relatively low reliability. SRAM
is widely used as the digital CIM (DCIM) device due to its high
write speed, high endurance, and high reconfigurability, which
allow it to perform dynamic weight matrix multiplications with
frequent writing. As shown in Fig. 4, we map layers of the
neural network to different computing modules based on device
characterizations. The large weight matrix is divided into parts
according to the CIM crossbar sizes. The CIM device simulates
MAC operations to compute the input row vectors in parallel.
Partial results are accumulated from the local adder tree and
transferred to the next module.

Matmul Q*KT

SIMD
-— >) Scale&
KT Softmax SRAM-based
CIM Tile

K
Dynamic write

LinearWyl——> v —> Concat —> [Linear|—> Output
A%

Matmul A*V
Fig. 4 Dataflow in multi-head attention block

Heterogeneous: We provide two different RRAM-based CIM
macro configurations, considering the difference between the
best parameters of different transformer layers is huge, as
proved in Fig. 1. The ViT architecture includes four static
weight matrix multiplication sizes: the projection layer, MLP
layer 1, MLP layer 2, and the output layer. So we could use
L =Ly, Ly, L3, L4], where L; = 1,2 to represent two different
RRAM-based CIM macro configurations.

So, a hybrid heterogeneous architecture specification is V' =
[A17A2,D,L]. When A7 = Ag or Ly = Ly = L3 = Ly, it
represents the homogeneous architecture.

D. Mapping

Mapping refers to the process of associating computational
operators with hardware modules, partitioning weights according
to the constrained tile and crossbar capacities, and determining
the mapping of each layer to specific tiles, which significantly
affects the data transmission paths and movement latency in

the network-on-chip (NoC) mesh [24]. As illustrated in Fig. 4,
compared to convolutional layers, transformers exhibit a more
complex network structure, which indicates that the spatial
position of weights plays a crucial role in inter-layer delay.
This section introduces and analyzes the spatial mapping scheme
specifically designed for transformers.

We will use the homogeneous architecture to illustrate our
spatial mapping scheme because homogeneous is a particular
case of heterogeneous, which can be considered separately in
two parts. The spatial mapping scheme for each layer has two
attributes: Resource (R; = (L;, [F;, WGT;,OF;)) and Data
path (DP; = (L;,1S;,0D;)). Resource represents the feature
map of the input (I F;), weight (W GT;), and output (O F;) matrix
for layer;, which decides the needed computing resources and
data movements. Data path contains the data sources of input
(IS;) and the destination of output (OD;) for layer;.

Besides, we use P = [(L1,N1), (L2, N2), ..., (L;, N;)] to
refer to the mapping position of layers, where L; means the
index of layer;. N; is the tile number of layer; and could be
calculated by

Li - Li
sz[TTHTC x Chp] (1)
where L7 and L{ are row and column of layer; and C,
means cells per number. Furthermore, Harmony uses the zigzag
encoding method to convert P into a mapping result.

As shown in Fig. 5(a), we propose a zigzag encod-
ing strategy to transform the mapping sequence P =
[(1,2),(3,2),(2,3),(4,2)] to a realistic result. This strategy is
designed to optimize data movement and prevent inefficient
mapping schemes. For instance, layer;. is mapped to tiles (1-
1) and (1-2). Subsequently, layers, which requires two tiles,
occupies the adjacent tiles (3-1) and (3-2). By placing tiles
belonging to the same layer physically close, such as (3-2) being
next to (3-1) rather than the leftmost part of the second row,
we significantly reduce intra-layer data movement paths. This
effective utilization of the zigzag encoding strategy ensures a
more logical and efficient mapping.

Once mapping is complete, the data flow for each layer is also
determined. As illustrated in Fig. 5(b), solid lines refer to input
data paths, while dashed lines represent output data paths for
each layer. The primary challenge arises from overlapping these
distinct data paths, which can lead to significant communication
conflicts and bandwidth pressure. Critically, the transmission
latency is directly influenced by the data path length and the
resources required for transmission. Therefore, the following
section will describe our design of an efficient mapping algo-
rithm to minimize overall transmission latency.

IV. ALGORITHM

A. Knowledge-Guided Grid Search

Based on TABLE II, the design space will be approximately
5.6 x 102, making it impractical to explore all possible com-
binations. During the traditional accelerator design flow, engi-
neers often test several representative parameter configurations
first and then gradually modify the configurations based on
the importance of the parameters. Inspired by the designers’
behavior, we propose a knowledge-guided grid search algorithm

P [(1,2), (3,2), (2,3),(4,2)]

_
DP [1,Buffer,SIMD] [2,SIMD,SRAM] Input data path

[3.SRAM,Layerd] [4,Layer3,..] Output data path
Buffer SRAM Buffert SRAM
T
1-1 fof 12 | 31 L o 12 || 31
| oo ,
SIMD |22 | 2-1 [32 SIMD {22 |~ 2-1 | |32
| m [
23 ol 41] 42 L 23 | | 41 | 42
(a) (b)

Fig. 5 Parsing encoded sequence into SPM scheme, (a) zigzag
encoding method; (b) data path of each layer.

with three steps: orthogonal experiment, dominance analysis-
based knowledge extraction and knowledge-guided search.

The orthogonal experiment is a widely adopted experimental
statistical design method that does not test all parameter com-
binations. Instead, it uses an orthogonal array (OA) to conduct
a minimum amount of representative experiments, significantly
reducing experimentation’s time and resource costs [25]. Orthog-
onal array follows the balance principle with the following two
properties: (1) each parameter’s value occurs the same number
of times in each column, and (2) each possible level combination
of any two given parameters occurs the exact times in the array.
The algorithm could automatically select OA depending on the
specific design space [26].

After conducting the orthogonal experiment, we apply dom-
inance analysis to evaluate the importance (D) of various
parameters, which can also be viewed as knowledge extraction.
Line 3 of Algorithm 1 means getting all subsets of the design
space V, where P(V) refers to the power set of V. R%(S)
refers to calculating the R? value for parameter combination
S as shown in Eq.2 and Eq.3, where SSR is the residual sum
of squares, SST is the total sum of squares and 7(S) is the
prediction value of linear regression for parameter combination

S.
SSR > (yi — 9:(9))?
R}(S)=1— —x =1 ==L 2
D S N T
§(S) = Bo+ Y _ Biz; 3)
jES

Then, the algorithm calculates each variable’s contribution by
comparing the R? values with and without v for all subsets
S € P(V). Finally, the dominance scores D are derived from
the average contribution across all subsets, as shown in line 7 of
the algorithm. In conclusion, dominance analysis identifies the
relative contribution of each variable in explaining the variance
of the dependent variable by comparing their impact across
different model combinations [27].

The knowledge obtained from dominance analysis helps de-
termine the exploration probability of different variables for
the next grid search. Specifically, each variable is treated as
a separate search dimension, forming a hypercube where each

Algorithm 1 Knowledge-Guided Grid Search

Input: Design Space: V; Orthogonal arrays: OAs; Iteration
number: N

Output: Optimal Configuration: Py

. Initialize Py by OAs,V > Step 1: orthogonal experiment
P+ MAX(P)
PV)«{S|SCV}
for S € P(V) do
forveV\Sdo
AR? + R*(SU {v}) —
D[v] < D[v] + AR?
end for
end for
Ko ¢ iy
: for i< 1to N do

> Step 2: dominance analysis

R2(S) > eq.(2) and eq.(3)

R A A R ol S

—_—
—= o

> Step 3: guided search

12: P; < Mutation(P} 1, K;_1)

13 Pr e MAX(P, Pr)

14: K, (P =P)P, xK;1
15: end for

parameter combination corresponds to a point on the grid.
Starting from the initial optimal candidate Fj, which is de-
rived from our previous orthogonal experiment, we modify its
variables to generate new populations based on the knowledge
vector K. We modify variables of P* repeatedly until new
populations are generated during the Mutation() process, and
the modified probability is based on the dominance values of
variables. After each iteration, we update the probability K, and
optimal candidate P, dynamically, as shown in lines 13-14 of
Algorithm 1.

B. Improved Genetic Algorithm

Step 1: | 1 | 2 | 3 | 5 l 4 I 6 | 7 |Parent 1
[4 [6 [3 [2] 1[5 7 |paren2
sep2a: | 4 [6 [3 [2 [1 [s [7]
sep3a: | 3 | 2 [1 | s [4 [6 [7 |chidr
sep2b: | 1 [2 [3 [s [a6 | 7|
/ \
sep3b: | 5 | 6 [3 [2 | 1 [4 | 7 |cnid2

Fig. 6 Order crossover

Unlike the vanilla genetic algorithm [28], we define special
operators (order crossover and swap mutation) to avoid legal-
ization processes during the iteration, which often significantly
reduce the algorithm’s efficiency, ensuring that each offspring
complies with the rules.

Order Crossover. Order crossover (OX) is a special operator
that ensures the sequence elements’ number and relative order
do not change. It selects a segment of genes from two parents,
keeping the gene order unchanged while filling other genes into
the children’s genes in the same relative order. This method
is particularly suitable for solving optimization problems that
require maintaining a particular order and number of elements,

Swap mutation

ol1[2]4]s3]5]6] ©

Bad case Reverse mutation

204 4 56 (O 01 43 256

Fig. 7 The diagram of swap mutation.

Original gene

0,1 23 4 5 6

and it demonstrates excellent performance in maintaining critical
information [28]. As shown in the step 1 of Fig. 6, blue gene
segments S; = |546| and Sy = [6321] are selected from two
parents P; = (1235467) and P, = (4632157). It should be
noted that we ignore V; because it is decided by Eq.1 when
we get the optimal hardware configuration. The gene is first
extracted and placed in the same position as (X X X |546] x)
and (X |6321| x x). Then, the gene segment is deleted from
the other parents’ genes O = (x x321x7) and Oy =
(x x xb4 x 7). Finally, we fill the remaining gene segment in
the genes in order and get two child genes, C; = (3215467)
and Cy = (5632147). From two parents, OX would obtain two
children, which are noted as branch a and branch b in Fig. 6.
We implement order crossover and multiple variants by varying
the gene segments’ position, length, and order.

Mutation. Harmony implements two mutation strategies:
swap mutation and reverse swap mutation. Swap mutation selects
a sub-segment in the parent and exchanges it with a sub-segment
in another position. Reverse swap mutation selects a continuous
segment in a sequence and reverses the order of its internal
elements, which helps test the impact of local structural changes
on the solution. As illustrated in Fig. 7, our employed mutation
method is designed to avoid unfavorable bad cases and enhance
efficiency. This strategy introduces significant genetic variation
while maintaining the local sequence structure, enabling the
algorithm to discover novel potential solutions.

V. EVALUATION

A. Setup

We use the RRAM-based and SRAM-based CIM macros
correspondingly from NeuroSim [29] and AutoDCIM [20]. Both
technology nodes of the CIM macro are evaluated at 22nm,
and data have been validated through post-silicon. Harmony
implements Network-on-Chip mesh interconnections using an
in-house performance model with DSENT [21] integrated to
evaluate performance, power, and area (PPA). Additional archi-
tectural parameters and bandwidth references are sourced from
ISAAC [30].

We quantize the Vision Transformer (ViT) model to INTS
format using the I-ViT method, replacing its nonlinear func-
tions with integer-only approximations [31]. We also implement
an integer-only SIMD module to support I-ViT’s Shiftmax,
ShiftGELU, and I-layerNorm operations, which are transferred
from the Softmax, GELU, and layerNorm functions of the ViT
architecture. TABLE III details our benchmark models: DeiT-
Tiny, DeiT-Small, and ViT-Base, each having distinct parameter
configurations [16], [32]. All evaluations are conducted on the
ImageNet 2012 dataset [33].

Our baseline consists of two components: the architecture
and the search algorithm. We use NeuroSIM’s architecture with

DeiT-Ti iT- iT-
® eiT-Tiny | 79 ® DeiT-Small 1.60 ® ViT-base
E 15 T 59 S].5 T R E 15 T
2 2 2
2 1 & 1 12 1] 2
S o5 : S o5 $ S o5 ¥
g E g B e
:2 0 : L REIN £ 0 . N BRI 2 0 L REI
area latency ©nergy area latency ©€nergy area latency °cnergy
(a) Area-oriented search result.
DeiT-Tiny DeiT-Small 1.98 ViT-base
.QE) 1.5 \ ,% 1.5 \ % .g 1.5 \
g 1o 18 1 18 1 *
8 05 A0 B 4= 05 L 05
g 05 i bl g O g O ; -
ZO Al B ZO Fl B 2 0 8 BN
area latency ©nergy area latency ©€DeIgy area latency Ccnergy
(b) Latency-oriented search result.
o 1.93 DeiT—Tiny o 1.74 DeiT-Small o 3.30 ViT-base
g L5 o+ ‘ £ L5 g ‘ R= L5 o+ ‘
Tw) 2 E : -73 -
B 17 e | .-g 1 | - N .-8 1 | N
£ 05 112 05 1205
g oo JE HLE $
ZO 1l R g E2 I B 2 i b
area area area

latency ¢€nergy

latency €nergy latency c€nergy

(c) Energy-oriented search result.

Fig. 8 Energy, area, and latency of the optimal architectures in different objectives for three ViT models (normalized to the baseline).

TABLE III Vision transformer specifications

DeiT-Tiny DeiT-Small | ViT-Base
#Parameters M 22M 86M
Embedding dimension 192 384 768
#Heads 3 6 12
Image size (224,224, 3)
#Tokens 198
Head dimension 64
MLP ratio 4

SRAM (S-Arch) as baseline architecture, and the architecture
explored by our Harmony framework is H-Arch. We adopt
the evolution algorithms (EA) of PIMSYN [15] as the baseline
search algorithm for algorithm evaluation ! because NeuroSIM’s
greedy strategy of maximizing utilization rate performs poorly
on such complex architectures. We compare three configurations,
S-Arch+EA, H-Arch+EA, and H-Arch+KGGS, optimizing for
area, latency, and energy on benchmarks. The starting points of
EA and KGGS come from orthogonal experiments, so they are
the same for each experiment. Unless otherwise specified, the
results represent the average of ten tests.

ISince PIMSYN does not specify the used evolution algorithm (EA), we
selected the classic genetic algorithm.

B. Architecture Search Result

Fig. 8 compares architectures and search algorithms for
different optimization objectives.

S-Arch vs. H-Arch: Architecture Advantages The results
demonstrate that H-Arch+EA achieves about 40% area re-
duction and 8% latency reduction on average. However, its
energy efficiency improvement is negligible. In contrast, our H-
Arch+KGGS significantly outperforms the baseline, yielding a
56% area reduction, 13% latency reduction, and 32% energy
reduction. H-Arch offers a distinct advantage over S-Arch by
simultaneously leveraging the strengths of different types of CIM
macros and increasing the flexibility of CIM macro selection.
This allows H-Arch to assign more suitable macro configurations
to each layer, leading to more suitable solutions. Therefore, H-
Arch, including EA and KGGS, often finds sounder solutions
than S-Arch.

EA vs. KGGS: Algorithm Efficiency It is worth noting that
the performance improvement of H-Arch+EA sometimes ap-
pears inconsistent with the characteristics of CIM types: ACIM
typically boasts higher cell density and lower power, while
DCIM provides the benefit of low latency [7]. For example,
the latency-oriented search result for ViT-base of H-Arch+EA
is larger than the baseline, and its energy efficiency improvement
is very little. Furthermore, it often comes at the cost of other
performance, as the blue numbers indicate. This discrepancy

stems from the larger design space of H-Arch compared to S-
Arch, which sometimes makes it challenging for EA to find a
better configuration. In contrast, H-Arch+KGGS consistently
achieves greater improvements than H-Arch+EA. We attribute
this to the higher efficiency of the KGGS algorithm. To further
substantiate this, we will detail a comprehensive analysis of the
search efficiency of both algorithms in the subsequent section.

——RS EA KGGS (Ours) *H3DAtten [5]® AESHA [34]
3 T T T T <11 T T T
%10 - [-
<2 -0 91 N
2 ‘ 28 o
<1 gm: 7 i * N
. 6 N
\ \ \ \ é 5 \ \ \
200 400 600 800 1k RS EA KGGS

#Samples

(a) Convergence curve (b) Distribution Box-plot

Fig. 9 The results of KGGS compared with other baselines in
the hardware design space explorations.

We record the best results of algorithms during the iteration
and draw convergence curves in Fig. 9(a). Compared with ran-
dom grid search (RS) and EA, KGGS demonstrates significantly
higher sample efficiency because of the specific knowledge. As
shown in Fig. 9(b), we use a box plot to illustrate the statistical
distribution (min, max, median, and quarter medians) of results
obtained over 10 trials. For comparison, we also mark data
for two state-of-the-art hybrid CIM-based vision transformer
accelerators: H3DAtten [5] (utilizing 16 nm SRAM DCIM
and 40 nm RRAM ACIM) and AESHA [34] (whose energy
efficiency is scaled to 22 nm). The results demonstrate two key
advantages of KGGS: its superior stability, evidenced by the
narrower range of its results compared to others, and its sig-
nificantly better performance across all metrics (lowest, highest,
and average values) when compared to both the accelerators and
other algorithms.

C. Mapping Optimization Result

77
77

777

227
727
A e
777l|Cct
777|cc .
7

7

7

777l|cct
277|cc

777l lcoc foen

DeiT-Tiny DeiT-Small =~ ViT-Base Average

Fig. 10 Comparison of latency

Next, we verify the efficiency of IGA compared with other
mapping algorithms such as NeuroSim’s layer-sequential (LS)
mapping strategy [12], random search (RS), and CoMN’s greedy
algorithm (Greedy) [13]. We select the optimal latency-oriented
results of three networks and calculate the latency improvement
and geometric average. Although both the RS and Greedy
algorithms have achieved specific improvements compared to the
baseline, the magnitude is limited and rapidly decreases as the
search space increases. As shown in Fig. 10, IGA achieves over
9% improvement compared to the baseline on ViT-base, while

it was 25% higher on DeiT-Tiny. The significant improvement
on average 17% proves the IGA’s effectiveness compared to
traditional mapping schemes.

D. Accuracy Result
TABLE IV Accuracy (%) of different architectures.

Architecture | DCIM ~ ACIM' ACIM? Hybrid CIM
DeiT-Tiny | 722 69.14 7125 7111
DeiT-Small | 798 76.65 78.94 79.01
ViT-Base | 818 7591 80.05 79.71

ACIMT: The SRAM-based ACIM tile with 7-bit ADC
ACIM?: The SRAM-based ACIM tile with 8-bit ADC

As discussed in [35]-[37], RRAM suffers from significantly
higher latency (1-2 orders of magnitude) compared to SRAM at
the same technology node and has limited endurance (approx-
imately 105-10° conservative writes), which severely impacts
their lifetime and constrains their applicability to Transformer
models. Given these limitations, using RRAM for all layers
in a Transformer is impractical. Therefore, we compare an
all-SRAM architecture with our proposed hybrid architecture
(which incurs no accuracy loss). As shown in TABLE 1V, the
hybrid architecture achieves an accuracy of 79.71%, which is
close to the all-SRAM architecture (original accuracy). Similar
to the results in MISCim [9], we find that achieving a comparable
accuracy with analog SRAM-based CIM requires setting the
ADC to 8/9 bits, resulting in even higher latency and power
consumption than digital SRAM-based CIM. In summary, the
hybrid architecture offers significant performance improvements
(Section V-B) while maintaining acceptable accuracy loss.

VI. DISCUSSION

Hybrid or heterogeneous CIM-based Accelerator The
hybrid Computing-in-Memory (CIM) architecture is widely
adopted because it can simultaneously utilize the complementary
advantages of different CIM types. For example, some ap-
proaches combine SRAM crossbars with RRAM to compensate
for variations and enhance accuracy [7]. Others, like HARDSEA,
strategically employ both high-efficiency analog RRAM-CIM
and high-precision digital SRAM-CIM [8]. The exploration of
3D RRAM and SRAM heterogeneous stacking further demon-
strates the versatility of these architectures [5]. Building on these
advancements, this work introduces an efficient design space
exploration algorithm for hybrid CIM systems.

Adapt Harmony to Other Design Space. Thanks to pre-
designed orthogonal tables of statisticians, our proposed al-
gorithm achieves strong scalability, primarily because it can
autonomously determine suitable orthogonal arrays. This means
our algorithm doesn’t need modification even when the design
space evolves, such as with new vision transformer variants or
more feature levels. This self-adaptive approach is essential for
addressing increasingly complex problems effectively.

VII. CONCLUSION

This article proposes Harmony, a hardware and mapping
co-exploration framework, to generate CIM-based transformer
accelerators automatically. Harmony has a knowledge-guided
grid search (KGGS) algorithm and an improved genetic algo-

rithm (IGA) to improve exploration efficiency. The experimental
results demonstrate the algorithm’s efficiency and the design
space’s enormous potential. In the future, we will provide a plug-
in system-level CIM simulator.

[1]

[3

=

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime:
A novel processing-in-memory architecture for neural network computation
in reram-based main memory,” ACM SIGARCH Computer Architecture
News, 2016.

Z. Chen, X. Chen, and J. Gu, “15.3 a 65nm 3t dynamic analog ram-based
computing-in-memory macro and cnn accelerator with retention enhance-
ment, adaptive analog sparsity and 44tops/w system energy efficiency,” in
2021 IEEE International Solid-State Circuits Conference (ISSCC), vol. 64,
2021.

J. Yue, Z. Yuan, X. Feng, Y. He, Z. Zhang, X. Si, R. Liu, M.-F. Chang,
X. Li, H. Yang et al., “14.3 a 65nm computing-in-memory-based cnn
processor with 2.9-to-35.8 tops/w system energy efficiency using dynamic-
sparsity performance-scaling architecture and energy-efficient inter/intra-
macro data reuse,” in 2020 IEEE International Solid-State Circuits
Conference-(ISSCC), 2020.

J. Park, Y. Shin, and H. Sung, “Multi-objective architecture search
and optimization for heterogeneous neuromorphic architecture,” in 2023
IEEE/ACM International Conference on Computer Aided Design (ICCAD),
2023.

W. Li, M. Manley, J. Read, A. Kaul, M. S. Bakir, and S. Yu, “H3datten:
Heterogeneous 3-d integrated hybrid analog and digital compute-in-
memory accelerator for vision transformer self-attention,” /JEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 2023.

Y. Ding, C. Liu, M. Duan, W. Chang, K. Li, and K. Li, “Haima: A
hybrid sram and dram accelerator-in-memory architecture for transformer,”
in 2023 60th ACM/IEEE Design Automation Conference (DAC), 2023.
G. Krishnan, Z. Wang, I. Yeo, L. Yang, J. Meng, M. Liehr, R. V. Joshi, N. C.
Cady, D. Fan, J.-S. Seo et al., “Hybrid rram/sram in-memory computing for
robust dnn acceleration,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2022.

S. Liu, C. Mu, H. Jiang, Y. Wang, J. Zhang, F. Lin, K. Zhou, Q. Liu,
and C. Chen, “Hardsea: Hybrid analog-reram clustering and digital-sram
in-memory computing accelerator for dynamic sparse self-attention in
transformer,” [EEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2023.

C. Wang, Z. Chen, and S. Huang, “Micsim: A modular simulator for mixed-
signal compute-in-memory based ai accelerator,” in Proceedings of the 30th
Asia and South Pacific Design Automation Conference, 2025.

X. Peng, R. Liu, and S. Yu, “Optimizing weight mapping and data flow
for convolutional neural networks on processing-in-memory architectures,”
IEEE Transactions on Circuits and Systems I: Regular Papers, 2019.

R. Pelke, J. Cubero-Cascante, N. Bosbach, F. Staudigl, R. Leupers, and
J. M. Joseph, “Clsa-cim: A cross-layer scheduling approach for computing-
in-memory architectures,” in 2024 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2024.

P-Y. Chen, X. Peng, and S. Yu, “Neurosim: A circuit-level macro model
for benchmarking neuro-inspired architectures in online learning,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 2018.

L. Han, R. Pan, Z. Zhou, H. Lu, Y. Chen, H. Yang, P. Huang, G. Sun,
X. Liu, and J. Kang, “Comn: Algorithm-hardware co-design platform for
non-volatile memory based convolutional neural network accelerators,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2024.

Y. Zhu, Z. Zhu, G. Dai, F. Tu, H. Sun, K.-T. Cheng, H. Yang, and
Y. Wang, “Pim-hls: An automatic hardware generation tool for heteroge-
neous processing-in-memory-based neural network accelerators,” in 2023
60th ACM/IEEE Design Automation Conference (DAC), 2023.

W. Li, X. Sun, X. Wang, L. Wang, Y. Han, and X. Chen, “Pimsyn:
Synthesizing processing-in-memory cnn accelerators,” in 2024 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2024.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in Euro-
pean conference on computer vision, 2020.

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(351

[36]

(371

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin
transformer: Hierarchical vision transformer using shifted windows,” in
Proceedings of the IEEE/CVF international conference on computer vision,
2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, 2017.

J. Chen, F. Tu, K. Shao, F. Tian, X. Huo, C.-Y. Tsui, and K.-T. Cheng,
“Autodcim: An automated digital cim compiler,” in 2023 60th ACM/IEEE
Design Automation Conference (DAC), 2023.

C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-
S. Peh, and V. Stojanovic, “Dsent-a tool connecting emerging photonics
with electronics for opto-electronic networks-on-chip modeling,” in 2012
IEEE/ACM Sixth International Symposium on Networks-on-Chip, 2012.
Z.Zhu, H. Sun, T. Xie, Y. Zhu, G. Dai, L. Xia, D. Niu, X. Chen, X. S. Hu,
Y. Cao et al., “Mnsim 2.0: A behavior-level modeling tool for processing-
in-memory architectures,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2023.

G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-S. Seo, U. Y. Ogras, and
Y. Cao, “Impact of on-chip interconnect on in-memory acceleration of deep
neural networks,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), 2021.

J. Cai, Z. Wu, S. Peng, Y. Wei, Z. Tan, G. Shi, M. Gao, and K. Ma,
“Gemini: Mapping and architecture co-exploration for large-scale dnn
chiplet accelerators,” in 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2024.

D. Li, S. Yao, Y.-H. Liu, S. Wang, and X.-H. Sun, “Efficient design space
exploration via statistical sampling and adaboost learning,” in Proceedings
of the 53rd Annual Design Automation Conference, 2016.

K.-T. Fang and Y. Wang, Number-theoretic methods in statistics.
Press, 1993, vol. 51.

D. V. Budescu, “Dominance analysis: a new approach to the problem of
relative importance of predictors in multiple regression.” Psychological
bulletin, 1993.

K. Deep and H. Mebrahtu, “New variations of order crossover for travelling
salesman problem,” International Journal of Combinatorial Optimization
Problems and Informatics, 2011.

X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “Dnn+ neurosim: An end-
to-end benchmarking framework for compute-in-memory accelerators with
versatile device technologies,” in 2019 IEEE international electron devices
meeting (IEDM), 2019.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional neural
network accelerator with in-situ analog arithmetic in crossbars,” ACM
SIGARCH Computer Architecture News, 2016.

Z. Li and Q. Gu, “I-vit: integer-only quantization for efficient vision
transformer inference,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
“Training data-efficient image transformers & distillation through atten-
tion,” in International conference on machine learning, 2021.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Im-
ageNet Large Scale Visual Recognition Challenge,” International Journal
of Computer Vision (IJCV), 2015.

X. Yu, T. Ni, X. Sheng, Y. Pan, L. He, and L. Zhao, “Aesha:
Accelerating eigen-decomposition-based sparse transformer with hybrid
rram-sram architecture,” ser. ICCAD °24. New York, NY, USA:
Association for Computing Machinery, 2025. [Online]. Available:
https://doi.org/10.1145/3676536.3676660

I. Chakraborty, M. Ali, A. Ankit, S. Jain, S. Roy, S. Sridharan, A. Agrawal,
A. Raghunathan, and K. Roy, “Resistive crossbars as approximate hardware
building blocks for machine learning: Opportunities and challenges,”
Proceedings of the IEEE, 2020.

F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, “Resistive random
access memory (rram): an overview of materials, switching mechanism,
performance, multilevel cell (mlc) storage, modeling, and applications,”
Nanoscale research letters, 2020.

A. Ankit, I. El Hajj, S. R. Chalamalasetti, S. Agarwal, M. Marinella,
M. Foltin, J. P. Strachan, D. Milojicic, W.-M. Hwu, and K. Roy, “Panther: A
programmable architecture for neural network training harnessing energy-
efficient reram,” IEEE Transactions on Computers, 2020.

CRC

https://doi.org/10.1145/3676536.3676660

